Publications and Theses

Browse through our current publications within the RTG 2543.

Journals

  1. 2023

    1. C. Veil et al., “Enhancing Tissue Impedance Measurements Through Modeling of Fluid Flow During Viscoelastic Relaxation,” IEEE Transactions on Biomedical Engineering, vol. 70, no. 2, Art. no. 2, Feb. 2023, doi: 10.1109/TBME.2022.3199468.
    2. P. Somers et al., “Cystoscopic depth estimation using gated adversarial domain adaptation,” Biomedical Engineering Letters, vol. 13, no. 2, Art. no. 2, May 2023, doi: 10.1007/s13534-023-00261-3.
    3. F. Fischer, K. Frenner, M. Granai, F. Fend, and A. Herkommer, “Data-driven development of sparse multi-spectral sensors for urological tissue differentiation,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 1, Art. no. 1, 2023, doi: 10.1051/jeos/2023030.
    4. V. Aslani, A. Toulouse, M. Schmid, H. Giessen, T. Haist, and A. Herkommer, “3D printing of colored micro-optics,” Optical Materials Express, vol. 13, no. 5, Art. no. 5, Apr. 2023, doi: 10.1364/ome.489681.
    5. P. L. Kalwa and T. E. Schäffer, “Water flow elastography – A promising tool to measure tissue stiffness during minimally invasive surgery,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 145, p. 106004, Sep. 2023, doi: 10.1016/j.jmbbm.2023.106004.
  2. 2022

    1. I. A. Montes-Mojarro et al., “Multiparametric Classification of Non-Muscle Invasive Papillary Urothelial Neoplasms: Combining Morphological, Phenotypical, and Molecular Features for Improved Risk Stratification,” International Journal of Molecular Sciences, vol. 23, no. 15, Art. no. 15, 2022, doi: 10.3390/ijms23158133.
    2. J. Marzi et al., “Noninvasive Physical Plasma as Innovative and Tissue-Preserving Therapy for Women Positive for Cervical Intraepithelial Neoplasia,” Cancers, vol. 14, no. 8, Art. no. 8, 2022, doi: 10.3390/cancers14081933.
    3. L. Becker et al., “Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids,” International Journal of Molecular Sciences, vol. 23, no. 13, Art. no. 13, 2022, doi: 10.3390/ijms23136956.
    4. F. Fischer, A. Birk, P. Somers, K. Frenner, C. Tarín, and A. Herkommer, “FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks,” Machine Learning and Knowledge Extraction, vol. 4, no. 4, Art. no. 4, 2022, doi: 10.3390/make4040049.
    5. N. Harland et al., “Elevated Expression of the Immune Checkpoint Ligand CD276 (B7-H3) in Urothelial Carcinoma Cell Lines Correlates Negatively with the Cell Proliferation,” International Journal of Molecular Sciences, vol. 23, no. 9, Art. no. 9, 2022, doi: 10.3390/ijms23094969.
    6. P. Somers et al., “Growth of Simulated Tumors Under the Influence of Oxygen Supply,” IFAC-PapersOnLine, vol. 55, no. 20, Art. no. 20, 2022, doi: 10.1016/j.ifacol.2022.09.170.
    7. S. Walz, V. Aslani, O. Sawodny, and A. Stenzl, “Robotic radical cystectomy – more precision needed?,” Current Opinion in Urology, vol. Publish Ahead of Print, Dec. 2022, doi: 10.1097/mou.0000000000001072.
    8. Y. Wei et al., “Urinary Tract Tumor Organoids Reveal Eminent Differences in Drug Sensitivities When Compared to 2-Dimensional Culture Systems,” International Journal of Molecular Sciences, vol. 23, no. 11, Art. no. 11, 2022, doi: 10.3390/ijms23116305.
    9. C. Veil et al., “Electro-Mechanical Coupling in Impedance-Based Tissue Differentiation Under Compression\ast,” IFAC-PapersOnLine, vol. 55, no. 20, Art. no. 20, 2022, doi: 10.1016/j.ifacol.2022.09.155.
    10. R. Geng et al., “CD24: A Marker for an Extended Expansion Potential of Urothelial Cancer Cell Organoids In Vitro?,” International Journal of Molecular Sciences, vol. 23, no. 10, Art. no. 10, 2022, doi: 10.3390/ijms23105453.
  3. 2021

    1. L. Becker et al., “Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring,” Cancers, vol. 13, no. 22, Art. no. 22, 2021, doi: 10.3390/cancers13225682.
    2. C. Veil, S. Petillon, J. Hotz, A. Knöller, A. Zimmermann, and O. Sawodny, “Minimally Invasive Sensors for Transurethral Impedance Spectroscopy,” IEEE Sensors Journal, vol. 21, no. 20, Art. no. 20, Oct. 2021, doi: 10.1109/JSEN.2021.3108779.
    3. N. Harland and A. Stenzl, “Micro-Ultrasound: a way to bring imaging for prostate cancer back to urology,” Prostate International, vol. 9, no. 2, Art. no. 2, Jun. 2021, doi: 10.1016/j.prnil.2020.12.002.
    4. N. Harland et al., “Organoide zur Weiterentwicklung der intraoperativen Diagnostik,” Der Urologe, vol. 60, no. 9, Art. no. 9, Sep. 2021, doi: 10.1007/s00120-021-01595-5.
    5. M. Holl et al., “Laparoscopic Peritoneal Wash Cytology-Derived Primary Human Mesothelial Cells for In Vitro Cell Culture and Simulation of Human Peritoneum,” Biomedicines, vol. 9, no. 2, Art. no. 2, 2021, doi: 10.3390/biomedicines9020176.

Conference Proceedings

  1. 2023

    1. P. Somers, S. Urich, R. Sauer, J. Schüle, O. Sawodny, and C. Tarín, “Real-Time Software-in-the-Loop Simulation of the OpenAPS System,” in 2023 IEEE/SICE International Symposium on System Integration (SII), in 2023 IEEE/SICE International Symposium on System Integration (SII). Jan. 2023, pp. 1–5. doi: 10.1109/SII55687.2023.10039344.
  2. 2022

    1. P. Somers, J. Schüle, C. Veil, O. Sawodny, and C. Tarín, “Geometric Mapping Evaluation for Real-Time Local Sensor Simulation,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Jul. 2022, pp. 609–612. doi: 10.1109/EMBC48229.2022.9871932.
    2. J. Schüle, J. Haag, P. Somers, C. Veil, C. Tarín, and O. Sawodny, “A Model-based Simultaneous Localization and Mapping Approach for Deformable Bodies,” in 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), in 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Jul. 2022, pp. 607–612. doi: 10.1109/AIM52237.2022.9863308.
    3. C. Veil, O. Makni, P. Somers, J. Schüle, C. Tarín, and O. Sawodny, “Detection Limits of Tetrapolar Impedance Sensors for Tissue Differentiation,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Jul. 2022, pp. 1–4. doi: 10.1109/EMBC48229.2022.9871065.
    4. F. Fischer, K. Frenner, and A. M. Herkommer, “Sparse Mid-Infrared Spectra Enable Real-time and In-vivo Applications in Tissue Discrimination,” EPJ Web of Conferences, vol. 266, p. 02004, 2022, doi: 10.1051/epjconf/202226602004.
  3. 2021

    1. C. Veil, R. Bach, P. Somers, O. Sawodny, and C. Tarín, “Geometry Factor Determination for Tetrapolar Impedance Sensor Probes,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Nov. 2021, pp. 6800–6805. doi: 10.1109/EMBC46164.2021.9629757.
    2. J. Schüle et al., “Multi-Physical Tissue Modeling of a Human Urinary Bladder,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Nov. 2021, pp. 4297–4302. doi: 10.1109/EMBC46164.2021.9629482.
    3. P. Somers, J. Schüle, C. Tarín, and O. Sawodny, “2D to 3D Segmentation: Inclusion of Prior Information using Random Walk Kalman Filters,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Nov. 2021, pp. 4222–4225. doi: 10.1109/EMBC46164.2021.9629734.

Student Theses

  1. 2023

    1. I. Mahninger, F. Fischer, and A. Herkommer, “Forschungsarbeit: Simulationsbasierte Optimierung von Einzelpunktmessungen bei der ATR-Spektroskopie,” 2023.
    2. M. Yu, F. Fischer, and S. Reichelt, “Masterarbeit: Simulation von Gewebespektren durch gewichtete Kombination latenter Räume in Autoencodern,” 2023.
  2. 2022

    1. V. Rilling, P. Kalwa, T. Schäffer, and O. Sawodny, “Bachelor’s Thesis: Influence of probe geometry and pressure ratio on water flow elastography (WaFE) measurements,” 2022.
    2. J. Zahn, S. Holdenried-Krafft, P. Somers, H. Lensch, and A. Schilling, “Master’s Thesis: Monocular Depth Estimation from Cystoscopy Videos using Unsupervised Adversarial Domain Adaptation,” 2022.
  3. 2021

    1. Z. Qi, F. Fischer, and A. Herkommer, “Research Work: Generation of spectral datasets for disease detection using deep learning,” 2021.
    2. M. Helbig, P. Kalwa, T. Schäffer, and O. Sawodny, “Bachelorarbeit: Entwicklung eines Elektrolytsensors zur Bestimmung des Elastizitätsmoduls in vivo,” 2021.
    3. S. Kunkel, C. Veil, J. Schüle, O. Sawodny, and C. Tarín, “Bachelorarbeit: Elektrische Gewebemodellierung im Rahmen der Gewebedifferenzierung mittels elektrischer Impedanzspektroskopie,” 2021.
    4. J. Seibold, P. Somers, J. Schüle, C. Tarín, and O. Sawodny, “Bachelorarbeit: Modellierung des Wachstums von Krebszellen für die Erzeugung synthetischer Blasentumore,” 2021.
    5. O. Makni, C. Veil, O. Sawodny, and C. Tarín, “Master’s Thesis: Finite Element Analysis of Impedance Sensors for Tissue Differentiation,” 2021.
    6. S. Schöne, C. Veil, O. Sawodny, and C. Tarín, “Bachelorarbeit: Kompensation von Störeffekten bei minimalinvasiven Impedanzsensoren,” 2021.
    7. F. Krauß, J. Schüle, O. Sawodny, and C. Tarín, “Bachelorarbeit: Multimodale Gewebemodellierung für die modellgestützte Gewebedifferenzierung mittels elektrischer und mechanischer Eigenschaften,” 2021.
    8. R. Bach, C. Veil, P. Somers, O. Sawodny, and C. Tarín, “Master’s Thesis: Modelling and Computer-Aided Simulation of the Electrical Behaviour of Urinary Bladder Tissue,” 2021.
    9. A. Steinitz, V. Aslani, and A. Herkommer, “Masterarbeit: Untersuchung einer Digitalholografie-Methodik zur Gewebedifferenzierung,” 2021.
To the top of the page